Dr. Mohsen Akbari

headshot of Dr. Mohsen Akbari


B.Sc. [Mechanical Engineering] (Sharif University of Technology)
M.Sc. [Mechanical Engineering] (Sharif University of Technology)
Ph.D. [Applied Sciences] (Simon Fraser University)
Post-doctorate [Biomedical Engineering, Tissue Engineering] (McGill University)
Post-doctorate [Biomedical Engineering, Tissue Engineering] (Harvard Medical School)
Associate Professor, Department of Mechanical Engineering, Faculty of Engineering, University of Victoria

Research Interests

; ; ; ; ; ; ; ; ; ;

Dr. Mohsen Akbari has developed multifunctional hydrogel-based wound dressing for wound monitoring and drug delivery. This smart bandage technology intends to treat wounds such as pressure ulcers, which are a common complication following a spinal cord injury. Research at Dr. Akbari’s laboratory lies at the interface of cellular biology, biomaterials, and mechanical engineering. His lab uses 3D bioprinting, electrospinning, and microfluidics technology to develop advanced fibrous materials for applications in tissue engineering and drug delivery.

Dr. Mohsen Akbari’s biomedical and tissue engineering research has a focus on biomaterials engineering with potential applications in creating biomimetic tissues including the nerve conduits and skeletal muscle. His team also develops smart tissues, wound dressings for the management of pressure ulcers, diabetic wounds, and burn injuries. Dr. Akbari completed his B.Sc. in mechanical engineering at the Sharif University of Technology and received his M.Sc. degree from the same institution. Later, he attended Simon Fraser University where he attained his doctorate in applied sciences and worked on flow and heat transfer in microfluidic devices. Dr. Akbari has completed two fellowships, one at McGill University and one at Harvard Medical School.

Dr. Mohsen Akbari is an ICORD principal investigator and, Associate Professor, and Director of Laboratory for Innovations in Microengineering, in the Department of Mechanical Engineering at UVic. He is also the co-founder and Chief Scientific Officer of 4M Biotech Ltd., a spinoff from his lab that commercializes smart wound dressings. His prior research experience includes a number of peer-reviewed articles, presentations, and several awards based on his prior research. This includes numerous awards from NSERC, Michael Smith Foundation, and BC Innovation Council of Canada, and Grand Challenges Canada. Recently, he has received grants from the CIHR for his research on the monitoring and management of injuries using an intelligent multifunctional wound dressing.

Major Findings:

  • Smart wound dressing for the management of slow-healing wounds
  • Injectable biomaterials for minimally-invasive drug delivery
  • Engineered infected epidermis model for drug studies

Techniques employed in the lab:

  • Electrospinning
  • 3D Bioprinting
  • Microfluidics
  • 3D cell culture

Affiliations with organizations and societies:

  • Member of the Canadian Biomaterials Society
  • Member of the Board of Directors of the Canadian Society for Mechanical Engineering
  • Associate Member of the Djavad Movafaghian for Brain Health
  • Member of Center for Advanced Materials and Related Technologies at University of Victoria
  • Member of Center for Biomedical Research at University of Victoria
  • Member of American Chemical Society


Some of Dr. Akbari’s recent major awards and accomplishments include:

  • Michael Smith Foundation for Health Research
  • Idea to Commercialization Award
  • Canadian Rising Stars in Global Health-Grand Challenges Canada
  • Postdoctoral Fellowship-Natural Sciences and Engineering Council of Canada (NSERC)
  • Graduate Research Scholarship-BC Innovation Council of Canada
  • Graduate Scholarship-Kaiser Foundation

Current lab members

Graduate Students
Zhina Hadisi

Current Opportunities in the Lab

Please visit Dr. Akbari’s lab website for current openings.

Recent publications

  • Hellmold, D, Arnaldi, P, Synowitz, M, Held-Feindt, J, Akbari, M. 2023. A biopolymeric mesh enriched with PLGA microparticles loaded with AT101 for localized glioblastoma treatment.. Biomed Mater. doi: 10.1088/1748-605X/acccc4.
  • Razzaghi, M et al.. 2023. 3D Printed Hydrogel Microneedle Arrays for Interstitial Fluid Biomarker Extraction and Colorimetric Detection.. Polymers (Basel). doi: 10.3390/polym15061389.
  • Zhu, Y et al.. 2023. Skin-interfaced electronics: A promising and intelligent paradigm for personalized healthcare.. Biomaterials. doi: 10.1016/j.biomaterials.2023.122075.
  • Mirani, B et al.. 2023. Smart Dual-Sensor Wound Dressing for Monitoring Cutaneous Wounds.. Adv Healthc Mater. doi: 10.1002/adhm.202203233.
  • Pagan, E et al.. 2023. A handheld bioprinter for multi-material printing of complex constructs.. Biofabrication. doi: 10.1088/1758-5090/acc42c.
Search PubMed